Mathematics

Rd Sharma 2019 2020 for Class 8 Math Chapter 1 – Rational Numbers

Rd Sharma 2019 2020 Solutions for Class 8 Math Chapter 1 Rational Numbers are provided here with simple step-by-step explanations. These solutions for Rational Numbers are extremely popular among Class 8 students for Math Rational Numbers Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma 2019 2020 Book of Class 8 Math Chapter 1 are provided here for you for free. You will also love the ad-free experience on ExamiumClasses’s Rd Sharma 2019 2020 Solutions. All Rd Sharma 2019 2020 Solutions for class Class 8 Math are prepared by experts and are 100% accurate.

Question 1:

Verify commutativty of addition of rational numbers for each of the following pairs of rotional numbers:
(i) 115 and 47

(ii) 49 and 712

(iii) 35 and 215

(iv) 27 and 1235

(v) 4 and 35

(vi) 4 and 47

Answer:

 Commutativity of the addition of rational numbers means that if ab and cd are two rational numbers, then ab+cd=cd+ab.(i) We have 115 and 47. 115 + 47= 11×75×7+4×57×5=7735+2035=77+2035=5735  47+115=4×57×5+11×75×7=2035+7735=207735=5735 115 + 47=47+115  Hence verified.(ii)  We have 49 and 712. 49+712= 4×49×4+7×312×3=1636+2136=162136=536712+49=7×312×3+4×49×4=2136+1636=21+1636=536 49+712=712+49 Hence verified.(iii) We have 35 and 215 or 35 and 215. 35+215=915+215=9+215=715215+35=215+915=2915=715 35+215=215+35Hence verified.(iv) We have 27 and 1235.27+1235=2×57×5+1235=101235=22351235+27=1235+2×57×5=121035=2235 27+1235=1235+27Hence verified.(v) We have 4 and 35.  4+35=4×51×5+35=2035=175  35+4=35+4×51×5=3+205=175  4+35=35+4 Hence verified.(vi) We have 4 and 47. 41+47=4×71×7+47=2847=327 47+41=47+4×71×7=4287=3274+47=474 Hence verified.

Question 2:

Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:
(i) x=12, y=23, z=15
(ii) x=25, y=43, z=710
(iii) x=711, y=25, z=322
(iv) x=2, y=35, z=43

Answer:

We have to verify that (x+y)+z = x+(y+z).(i) x=12, y=23, z=15(x+y)+z =(12+23)+15=(36+46)+15=76+15=3530+630=35630=2930 x+(y+z)=12+(23+15)=12+(1015+315)=12+715=1530+1430=15+1430=2930 ( 12+23)+15=12+(23+15) Hence verified.(ii) x=25, y=43, z=710(x+y)+z= (25+43)+710=(615+2015)+710=1415+710=2830+2130=282130=730 x+(y+z)=25+(43+710)=25+(4030+2130)=25+1930=1230+1930=12+1930=73025+43)+710=25+(43+710) Hence verified.(iii) x=711, y=25, z=322(x+y)+z =(711+25)+322=(3555+2255)+322=5755+322=114110+15110=11415110=129110 x+(y+z)=711+(25+322)=711+(44110+15110)=711+59110=70110+59110=7059110=129110 (711+25)+322=711+(25+322)Hence verified.(iv) x=2, y=35, z=43so, (x+y)+z =(2+35)+43=(105+35)+43=75+43=2115+2015=212015=4115 x+(y+z)=2+(35+43)=21+(915+2015)=21+1115=3015+1115=301115=4115 (2+35)+43=2+(35+43)Hence verified.

Question 3:

Write the additive inverse of each of the following rational numbers:
(i) 217
(ii) 311
(iii) 175
(iv) 1125

Answer:

(i) Additive inverse is the negative of the given number.So, additive inverse of 217 is 217.(ii) Additive inverse is the negative of the given number.So, additive inverse of 311 is 311.(iii) Additive inverse is the negative of the given number.So, additive inverse of 175 is 175.(iv) Additive inverse is the negative of the given number.So, additive inverse of 1125 is 1125.

Question 4:

Write the negative (additive inverse) of each of the following:
(i) 25
(ii) 79
(iii) 1613
(iv) 51
(v) 0
(vi) 1
(vii) −1

Answer:

(i) Negative of 25 is 25.(ii) Negative of 79 is 79.(iii) Negative of 1613 is 1613.(iv) Negative of 51 is 51.(v) Negative value of 0 is 0.(vi) Negative of 1 is 1.(vi) Negative of 1 is 1.

Question 5:

Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:
(i) 25+73+45+13
(ii) 37+49+117+79
(iii) 25+83+1115+45+23
(iv) 47+0+89+137+1721

Answer:

(i) We have:25+73+45+13=(25+45)+(73+13)=245+713=25+63=6+3015=2415=85(ii)We have:37+49+117+79=(37+117)+(49+79)=3117+4+79=87+39=72+2163=5163=1721(iii) We have:25+83+1115+45+23=(25+45)+(+83+23)+1115=2+45+823+1115=65+63+1115=18+301115=3715(iv)We have: 47+0+89+137+1721=(47+137)+(89)+1721=4137+89+1721=97+89+1721=8156+5163=8663

Question 6:

Re-arrange suitably and find the sum in each of the following:
(i) 1112+173+112+252
(ii) 67+56+49+157
(iii) 35+73+95+1315+73
(iv) 413+58+813+913
(v) 23+45+13+25
(vi) 18+512+27+712+97+516

Answer:

(i) (112+252)+173+1112=11252+173+1112=142+173+1112=7+173+1112=8468+1112=14112=474(ii) (67+157)+56+49=6157+56+49=217+56+49=37810556126=539126=7718(iii) (35+95)+(73+73)+1315=3+95+7+73+1315=125+1315=361315=2315(iv) (413813+913)+58=48+913+58=513+58=4065104=25104(v) (23+13)+(45+25)=33+25=15615=915=35(vi) (18+516)+(512+712)+(27+97)=(2516)+(5+712)+(2+97)=316+1212+117=63+336+528336=801336=267112



Question 1:

Subtract the first rational number from the second in each of the following:
(i) 38, 58
(ii) 79, 49
(iii) 211, 911
(iv) 1113, 413
(v) 14, 38
(vi) 23, 56
(vii) 67, 1314
(viii) 833, 722

Answer:

(i) 5838=538=28=14(ii) 4979=4(7)9=4+79=119(iii) 911211=(9)(2)11=9+211=711(iv) 4131113=41113=1513(v) 3814=328=58(vi) 5623=5646=5(4)6=5+46=96=32(vii) 131467=13(12)14=13+1214=114(viii) 722833=21661666=(21)(16)66=21+1666=566

Question 2:

Evaluate each of the following:
(i) 2335
(ii) 4723
(iii) 4757
(iv) 259
(v) 3827
(vi) 413526
(vii) 51427
(viii) 13151225
(ix) 613713
(x) 7241936
(xi) 563821

Answer:

(i) 2335=1015915=10915=115(ii) 4723=12211421=(12)(14)21=12+1421=221(iii) 4757=457=17(iv) 259=18959=1859=239(v) 3827=21561656=21(16)56=21+1656=3756(vi) 413526=826526=8(5)26=8+526=326(vii) 51427=514414=5(4)14=5+414=114(viii) 13151225=65753675=653675=2975(ix) 613713=6(7)13=6+713=113(x) 7241936=21723872=213872=1772(xi) 563821=5632463=5(24)63=5+2463=2963

Question 3:

The sum of the two numbers is 59. If one of the numbers is 13, find the other.

Answer:

It is given that the sum of two numbers is 59, where one of the numbers is 13.Let the other number be x.  x+13=59 x=5913x=5939 x=539 x=29

Question 4:

The sum of two numbers is 13. If one of the numbers is 123, find the other.

Answer:

It is given that the sum of two numbers is 13, where one of the numbers is 123.Let the other number be x. x+123=13 x=13123 x=1(12)3=1+123=113

Question 5:

The sum of two numbers is 43. If one of the numbers is −5, find the other.

Answer:

It is given that the sum of two numbers is 43, where one of the numbers is 5.Let the other number be x. x+(5)=43 x=43(51) x=43153 x=4(15)3x=4+153=113

Question 6:

The sum of two rational numbers is −8. If one of the numbers is 157, find the other.

Answer:

It is given that the sum of two rational numbers is 8, where one of the numbers is 157.Let the other rational number be x. x + 157=8x=81157x=567157=56(15)7=56+157=417Therefore, the other rational number is 417.

Question 7:

What should be added to 78 so as to get 59?

Answer:

Let x be added to 78 so as to get 59. x+78=59x=5978x=40726372 x=40(63)72x=40+6372=10372

Question 8:

What number should be added to 511 so as to get 2633?

Answer:

Let x be added. x+511=2633 x=2633511x=26331533 x=26(15)33 x=26+1533 x=4133

Question 9:

What number should be added to 57 to get 23?

Answer:

Let x be added. x+57=23 x=2357x=14211521 x=14(15)21x=14+1521x=121

Question 10:

What number should be subtracted from 53 to get 56?

Answer:

Let x be subtracted. 53x=56 x=5356 x=10656 x=1056=156=52



Question 11:

What number should be subtracted from 37 to get 54?

Answer:

Let, x be subtracted. 37x=54 x=3754x=12283528 x=123528=2328

Question 12:

What should be added to 23+35 to get 215?

Answer:

Let x be added. x+(23+35)=215x+(1015+915)=215x+(10+915)=215x=2151915 x=21915 x=2115 x=75

Question 13:

What should be added to 12+13+15 to get 3?

Answer:

Let x be added. x+(12+13+15)=3x+(1530+1030+630)=3 x+(15+10+630)=3 x+3130=3x=313130 x=90303130 x=903130x=5930

Question 14:

What should be subtracted from 3423 to get 16?

Answer:

Let x be subtracted. (3423)x=16 (912812)x=16(9812)x=16x=11216x=112212 x=1(2)12x=1+212x=312x=14

Question 15:

Fill in the blanks:
(i) 413326=. . .
(ii) 914+. . .=1
(iii) 79+. . .=3
(iv) . . .+1523=4

Answer:

(i) 413326=826326 =8(3)26=8+326=526(ii) 914+x=1x=1914 x=1414914x=14(9)14x=14+914x=514(iii) 79+x=3x=379x=27979x=27(7)9x=27+79x= 349(iv) x+1523=4x=4 1523x=9223 1523x=921523x=7723



Question 1:

Simplify each of the following and write as a rational number of the form pq:
(i) 34+56+78
(ii) 23+56+79
(iii) 112+76+58
(iv) 45+710+815
(v) 910+2215+1320
(vi) 53+32+73+3

Answer:

(i) 34+56+78=1824+2024+2124=18+20+(21)24=18+202124=1724(ii) 23+56+79=1218+1518+1418=12+(15)+(14)18=12151418=1718(iii) 112+76+58=13224+2824+1524=(132)+28+(15)24=132+281524=11924(iv) 45+710+815=2430+2130+1630=(24)+(21)+(16)30=24211630=6130(v) 910+2215+1320=5460+8860+3960=(54)+88+(39)60=54+883960=560=112(vi) 53+32+73+3=106+96+146+186=10+(9)+(14)+186=10914+186=56



Question 2:

Express each of the following as a rational number of the form pq:
(i) 83+14+116+383
(ii) 67+1+79+1921+127
(iii) 152+98+113+6+76
(iv) 74+0+95+1910+1114
(v) 74+53+12+56+2

Answer:

(i) 83+14+116+383=6424+624+4424+9247224=(64)+(6)+(44)+9+(72)24=64644+97224=17724=598(ii) 67+1+79+1921+127=5463+6363+4963+5763+10863=54+63+(49)+57+(108)63=54+6349+5710863=1763(iii) 152+98+113+6+76=18024+2724+8824+14424+2824=180+27+(88)+144+(28)24=180+2788+1442824=23524(iv) 74+0+95+1910+1114=245140+252140+266140+110140=(245)+(252)+266+110140=245252+266+110140=121140(v) 74+53+12+56+2=2112+2012+612+1012+2412=(21)+20+(6)+(10)+2412=21+20610+2412=712

Question 3:

Simplify:
(i) 32+5474

(ii) 5376+23

(iii) 547623

(iv) 2531047

(v) 56+25215

(vi) 3829+536

Answer:

(i) 32+5474Taking the L.C.M.of the denominators:64+5474=6+574=84= 2(ii) 5376+23Taking the L.C.M.of the denominators:10676+46=107+(4)6=10746=16(iii) 547623Taking the L.C.M.of the denominators:15121412812=1514(8)12=1514+812=912=34(iv) 2531047Taking the L.C.M.of the denominators:287021704070=(28)(21)(40)70=28+21+4070=3370(v) 56+25215Taking the L.C.M.of the denominators:2530+1230430=25+(12)(4)30=2512+430=1730(vi) 3829+536Taking the L.C.M.of the denominators:27721672+1072=27(16)+(10)72=27+161072=3372=1124



Question 1:

Multiply:
(i) 711 by 54
(ii) 57 by 34
(iii) 29 by 511
(iv) 317 by 54
(v) 97 by 3611
(vi) 1113 by 217
(vii) 35 by 47
(viii) 1511 by 7

Answer:

(i) 711×54=7×511×4=3544(ii) 57×34=5×(3)7×4=1528(iii) 29×511=(2)×59×11=1099(iv) 317×54=(3)×(5)17×(4)=1568(v) 97×3611=9×36(7)×(11)=32477(vi) 1113×217=(11)×(21)13×7=23191=3313(vii) 35×47=(3)×(4)5×7=1235(viii) 1511×7=1511×71=(15)×711×1=10511

Question 2:

Multiply:
(i) 517 by 5160

(ii) 611 by 5536

(iii) 825 by 516

(iv) 67 by 4936

(v) 89 by 716

(vi) 89 by 364

Answer:

(i) 517×5160=517×3×175×3×4=5×3×1717×5×3×4=14(ii) 611×5536=611×5×116×6=56(iii) 825×516=15×5×52=110(iv) 67×4936=67×7×76×6=76(v) 89×716=19×72=718(vi) 89×364=83×3×38×8=124



Question 3:

Simplify each of the following and express the result as a rational number in standard form:
(i) 1621×145

(ii) 76×328

(iii) 1936×16

(iv) 139×2726

(v) 916×6427

(vi) 507×143

(vii) 119×8188

(viii) 59×7225

Answer:

(i)1621×145=2×2×2×23×7×2×75=3215(ii) 76×328=72×3×32×2×7=18(iii) 1936×16=192×2×3×3×2×2×2×2=769(iv) 139×2726=133×3×3×3×32×13=32(v) 916×6427=916×4×163×9=43(vi) 507×143=507×2×73=1003(vii) 119×8188=119×9×98×11=98(viii) 59×7225=59×8×95×5=85

Question 4:

Simplify:
(i) 258×2535×109

(ii) 12×14+12×6

(iii) 5×2156×29

(iv) 94×53+132×56

(v) 43×125+37×2115

(vi) 135×8352×113

(vii) 137×112643×56

(viii) 85×32+310×1116

Answer:

(i) (258×25)(35×109)=5423=5×3+2×412=2312(ii) (12×14)+(12×6)=18+3=1+3×88=258(iii) (5×215)(6×29)=2343=2+43=23(iv) (94×53)+(132×56)=3×54+13×512=154+6512=15×3+6512=2012=53(v) (43×125)+(37×2115)=4×45+1×35=165+35=16+35=195(vi) (135×83)(52×113)=13×8155×116=10415556=104×2+55×530=48330(vii) (137×1126)(43×56)=1×117×22×53×3=1114109=11×9+10×14126=239126(viii) (85×32)+(310×1116)=4×(3)5+3×1110×16=125+33160=12×3233160=38433160=417160

Question 5:

Simplify:
(i) 32×16+53×72138×43

(ii) 14×27514×23+37×92

(iii) 139×152+73×85+35×12

(iv) 311×56912×43+513×615

Answer:

(i) (32×16)+(53×72)(138×43)=14+356136=1×3+35×213×212=3+702612=4712(ii)(14×27)(514×23)+(37×92)=114521+2714=1×3+5×2+27×342=9442=4721(iii) (139×152)+(73×85)+(35×12)=13×56+7×815+310=656+5615+310=65×5+56×2+3×330=20430=345(iv) (311×56)(912×43)+(513×615)=5221+213=5×13286+2×22286=65286+44286=177286



Question 1:

Verify the property: x × y = y × x by taking:
(i) x=13, y=27
(ii) x=35, y=1113
(iii) x=2, y=78
(iv) x=0, y=158

Answer:

We have to verify that x×y=y×x.(i) x=13, y=27x×y=13×27=221y×x=27×13=221 13×27=27×13Hence verified.(ii) x=35, y=1113x×y=35×1113=3365y×x=1113×35=3365 35×1113=1113×35 Hence verified.(iii) x=2, y=78 x×y=2×78= 74y×x=78×2= 74 2×78=78×2Hence verified.(iv) x=0, y=158 x×y=0×158=0y×x=158×0=0 0×158=158×0Hence verified.

Question 2:

Verify the property: x × (y × z) = (x × y) × z by taking:

(i) x=73, y=125, z=49

(ii) x=0, y=35, z=94

(iii) x=12, y=54, z=75

(iv) x=57, y=1213, z=718

Answer:

We have to verify that x×(y×z)=(x×y)×z.(i) x=73, y=125, z=49x×(y×z)=73×(125×49)=73×1615=11245(x×y)×z=(73×125)×49=285×49=1124578×(155×49)=(78×155)×49Hence verified.(ii) x=0, y=35, z=94x×(y×z)= 0×(35×94)= 0×2720=0(x×y)×z=(0×35)×94= 0×94=0 0×(35×94)=(0×35)×94Hence verified.(iii) x=12, y=54, z=74x×(y×z)= 12×(54×74)=12×3516=3532(x×y)×z=(12×54)×74=58×74=3532 12×(54×74)=(12×54)×74Hence verified. (iv) x=57, y=1213, z=718x×(y×z)=57×(1213×718)=57×1439=1039(x×y)×z=57×1213)×718=6091×718=1039 57×(1213×718)=(57×1213)×718Hence verified.



Question 3:

Verify the property: x × (y + z) = x × y + x × z by taking:

(i) x=37, y=1213, z=56

(ii) x=125, y=154, z=83

(iii) x=83, y=56, z=1312

(iv) x=34, y=52, z=76

Answer:

We have to verify that  x×(y+z)=x×y+x×z.(i) x=37, y=1213, z=56x×(y+z)=37×(1213+56)=37×726578=37×778= 126x×y+x×z=37×1213+37×56=3691+514=36×2+5×13182=72+65182=126 37×(1213+56)=37×1213+37×56Hence verified.(ii) x=125, y=154, z=83x×(y+z)=125×(154+83)=125×45+3212=125×1312=135x×y+x×z=125×154+125×83=91+325=45325=135125×(154+83)=125×154+125×83Hence verified.(iii) x=83, y=56, z=1312x×(y+z)=83×(56+1312)=83×101312=83×312=23x×y+x×z=83×56+83×1312=209+269=20+269=23 83×(56+1312)=83×56+83×1312Hence verified . (iv) x=34, y=52, z=76x×(y+z)=34×(52+76)=34×15+76=34×86=1x×y+x×z=34×52+34×76=158+78=1578=134×(52+76)=34×52+34×76Hence verified.

Question 4:

Use the distributivity of multiplication of rational numbers over their addition to simplify:
(i) 35×3524+101

(ii) 54×85+165

(iii) 27×716214

(iv) 34×8940

Answer:

(i) 35×(3524+101)=35×3524+35×101=78+61=7+488=558(ii) 54×(85+165)=54×85+54×165=21+41=6(iii) 27×(716214)=27×71627×214=1832=1128=118(iv) 34×(8940)=34×8934×40=2330=2903=883

Question 5:

Find the multiplicative inverse (reciprocal) of each of the following rational numbers:
(i) 9
(ii) −7
(iii) 125
(iv) 79
(v) 35
(vi) 23×94
(vii) 58×1615
(viii) 2×35
(ix) −1
(x) 03
(xi) 1

Answer:

(i) Multiplicative inverse (reciprocal) of 9 = 19(ii) Multiplicative inverse (reciprocal) of 7 = 17(iii) Multiplicative inverse (reciprocal) of 125 = 512(iv) Multiplicative inverse (reciprocal) of 79 = 97(v) Multiplicative inverse (reciprocal) of 35 = 53 or 53(vi) Multiplicative inverse (reciprocal) of 23×94 = 32×49=23(vii) Multiplicative inverse (reciprocal) of 58×1615 = 85×1516=32(viii) Multiplicative inverse (reciprocal) of 2×35 = 12×53=56(ix) Multiplicative inverse (reciprocal) of 1 = 11=1(x) Multiplicative inverse (reciprocal) of 03 = 30=undefined (ix) Multiplicative inverse (reciprocal) of 1 = 11=1

Question 6:

Name the property of multiplication of rational numbers illustrated by the following statements:
(i) 516×815=815×516

(ii) 175×9=9×175

(iii) 74×83+1312=74×83+74×1312

(iv) 59×415×98=59×415×98

(v) 1317×1=1317=1×1317

(vi) 1116×1611=1

(vii) 213×0=0=0×213

(viii) 32×54+32×76=32×54+76

Answer:

(i) Commutative property
(ii) Commutative property
(iii) Distributivity of multiplication over addition
(iv) Associativity of multiplication
(v) Existence of identity for multiplication
(vi) Existence of multiplicative inverse
(vii) Multiplication by 0
(viii) Distributive property

Question 7:

Fill in the blanks:
(i) The product of two positive rational numbers is always …..
(ii) The product of a positive rational number and a negative rational number is always …..
(iii) The product of two negative rational numbers is always …..
(iv) The reciprocal of a positive rational number is …..
(v) The reciprocal of a negative rational number is …..
(vi) Zero has ….. reciprocal.
(vii) The product of a rational number and its reciprocal is …..
(viii) The numbers ….. and ….. are their own reciprocals.
(ix) If a is reciprocal of b, then the reciprocal of b is …..
(x) The number 0 is ….. the reciprocal of any number.
(xi) Reciprocal of 1a, a0 is …..
(xii) (17 × 12)−1 = 17−1 × …..

Answer:


(i) Positive
(ii) Negative
(iii) Positive
(iv) Positive
(v) Negative
(vi) No
(vii) 1
(viii) -1 and 1
(ix) a
(x) not
(xi) a
(xii) 121



Question 8:

Fill in the blanks:
(i) 4×79=79× ......
(ii) 511×38=38× ......
(iii) 12×34+512=12×......+......×512
(iv) 45×57+89=45×.....×89

Answer:

(i) 4x×y=y×x  (commutativity)(ii) 511x×y=y×x  (commutativity)(iii) 34;12x×(y+z)=x×y+x×z  (distributivity of multiplication over addition)(iv) 57x×(y×z)=(x×y)×z  (associativity of multiplication )



Question 1:

Divide:
(i) 1 by 12

(ii) 5 by 57

(iii) 34 by 916

(iv) 78 by 2116

(v) 74 by 6364

(vi) 0 by 75

(vii) 34 by 6

(viii) 23 by 712

(ix) 4 by 35

(x) 313 by 465

Answer:

(i) 1÷12=1×21=2(ii) 5÷57=5×75=7(iii) 34÷916=34×169=43(iv) 78÷2116=78×1621=23(v) 74÷6364=74×6463=169(vi) 0÷75=0×57=0(vii) 34÷6=34×16=18(viii) 23÷712=23×127=87(ix) 4÷35=4×53=203(x) 313÷465=313×654=154



Question 2:

Find the value and express as a rational number in standard form:
(i) 25÷2615

(ii) 103÷3512

(iii) 6÷817

(iv) 4099÷(20)

(v) 2227÷11018

(vi) 36125÷375

Answer:

(i) 25÷2615=25×1526=313(ii) 103÷3512=103×1235=87(iii) 6÷817=6×178=514(iv) 4099÷(20)=4099×120=299(v) 2227÷11018=2227×18110=215(vi) 36125÷375=36125×753=365

Question 3:

The product of two rational numbers is 15. If one of the numbers is −10, find the other.

Answer:

Let the other number be x. x×(10)=15or x=1510=32So, the other number is 32.

Question 4:

The product of two rational numbers is 89. If one of the numbers is 415, find the other.

Answer:

Let the other number be x. x×415=89or x=89÷415or x=89×154or x=103Thus, the other number is 103.

Question 5:

By what number should we multiply 16 so that the product may be 239?

Answer:

Let the number be x. x×16=239x=239÷16 x=239×61=463Therefore, the other number is 463.

Question 6:

By what number should we multiply 1528 so that the product may be 57?

Answer:

Let the other number be x. x×1528=57or x=57÷1528or x=57×2815or x=43Thus, the other number is 43.

Question 7:

By what number should we multiply 813 so that the product may be 24?

Answer:

Let the number be x. x×813=24or x=24÷813or x=24×138or x=39Thus, the number is 39.

Question 8:

By what number should 34 be multiplied in order to produce 23?

Answer:

Let the other number that should be multiplied with 34 to produce 23 be x. x×34=23or x=23÷34or x=23×43or x=89Thus, the number is 89.

Question 9:

Find (x + y) ÷ (x − y), if
(i) x=23, y=32
(ii) x=25, y=12
(iii) x=54, y=13
(iv) x=27, y=43
(v) x=14, y=32

Answer:

Question 10:

The cost of 723 metres of rope is Rs 1234. Find its cost per metre.

Answer:

The cost of 723 metres of rope is Rs 1234. Cost per metre =1234÷723=514÷233=514×323=15392=Rs 16192                                     

Question 11:

The cost of 213 metres of cloth is Rs 7514. Find the cost of cloth per metre.

Answer:

The cost of 213 metres of cloth is Rs 7514. Cost per metre=7514÷213=3014÷73=3014×37=1294=Rs 3214 Thus, Rs 3214 or Rs 32.25 is the cost of cloth per metre.                                      

Question 12:

By what number should 3316 be divided to get 114?

Answer:

Let the number be x. 3316÷x=114or 3316×1x=114or 1x=114×1633or 1x=43or  x=34Thus, the number is 34.

Question 13:

Divide the sum of 135 and 127 by the product of 317 and 12.

Answer:

(135+127)÷(317×12)=13×7+12×535÷3114=91+6035÷3114=3135×1431=25

Question 14:

Divide the sum of 6512 and 127 by their difference.

Answer:

(6512+127)÷(6512127)=65×7+12×1284÷65×712×1284=455+14484÷45514484=59984÷31184=59984×84311=599311

Question 15:

If 24 trousers of equal size can be prepared in 54 metres of cloth, what length of cloth is required for each trouser?

Answer:

 Cloth needed to prepare 24 trousers=54 m Length of the cloth required for each trousers= 54÷24=5424=94 m = 214 metres



Question 1:

Find a rational number between −3 and 1.

Answer:

Rational number between 3 and 1 = 3+12=22=1

Question 2:

 Find any five rational numbers less than 2.

Answer:

We can write:2=21=2×51×5=105Integers less than 10 are 0, 1, 2, 3, 4, 5 ... 9.Hence, five rational numbers less than 2 are 05,15,25,35 and45 .

Question 3:

Find two rational numbers between 29 and 59.

Answer:

Since both the fractions (29 and 59) have the same denominator, the integers between the numerators(2 and 5) are 1, 0, 1, 2, 3, 4.Hence, two rational numbers between 29 and 59 are 09 or 0 and 19.

Question 4:

Find two rational numbers between 15 and 12.

Answer:

Rational number between 15 and 12=(15+12)2=2+5102=720Rational number between 15 and 720=(15+720)2=4+7202=1140Therefore, two rational numbers between15 and 12 are 720 and 1140.

Question 5:

Find ten rational numbers between 14 and 12.

Answer:

The L.C.M of the denominators (2 and 4) is 4.So, we can write  14 as it is.Also,  12=1×22×2=24As the integers between the numerators 1 and 2 of both the fractions are not sufficient, we will multiply the fractions by 20.14=1×204×20=208024=2×204×20=4080Between 20 and 40, there are 19 integers. They are 21, 22, 23, 24, 25, 26, 27....39, 40. Thus, 2140,2240,2340,2440,2540,...................3840 and 3940 are the fractions.We can take any 10 of these.

Question 6:

Find ten rational numbers between 25 and 12.

Answer:

L.C.M of the denominators (2 and  5) is 10.We can write: 25=2×25×2=410 and 12=1×52×5=510Since the integers between the numerators (4 and 5 ) of both the fractions are not sufficient, we will multiply the fractions by 2.410=4×210×2=820510=5×210×2=1020There are 17 integers between 8 and 10, which are 7,6,5,4...................8, 9.These can be written as:720,620,520,420,320,...................820 and 920We can take any 10 of these.

Question 7:

Find ten rational numbers between 35 and 34.

Answer:

The L.C.M of the denominators 5 and 4 of both the fractions is 20.We can write:35=3×45×4=122034=3×54×5=1520Since the integers between the numerators 12 and 15 are not sufficient, we will multiply both the fractions by 5.1220=12×520×5=601001520=15×520×5=75100There are 14 integers between 60 and 75. They are 61, 62, 63.......73 and 74.Therefore, 60100,61100,62100..........73100 and74100 are the 14 fractions.We can take any 10 of these.



Question 1:

Add the following rational numbers.
(i) 57 and 37
(ii) 154 and 74
(iii) 811 and 411
(iv) 613 and 913

Answer:

(i) 57 + 37 = 5+37 = 27(ii) 154 + 74 = 15+74 = 84 = 2(iii) 811 + 411 = 8411 = 1211(iv) 613 + 913 = 6913 = 313



Question 2:

Add the following rational numbers:
(i) 34 and 58
(ii) 59 and 73
(iii) 3 and 35
(iv) 727 and 1118
(v) 314 and 58
(vi) 536 and 712
(vii) 516 and 724
(viii) 718 and 827

Answer:

(i) Clearly, denominators of the given numbers are positive. The L.C.M. of denominators 4 and 8 is 8. Now, we will express 34in the form in which it takes the denominator is 8.3×24×2=6834 + 58=68+58=6+(5)8=658= 18(ii) 59 + 73=59 + 73The L.C.M. of denominators 9 and 3 is 9. Now, we will express 73 in the form in which it takes the denominator is 9.7×33×3=21959 + 73=59 + 219=(5)+219=5+219= 169(iii) 3 +35=31 +35The L.C.M. of denominators 1 and 5 is 5. Now, we will express 31 in the form in which it takes the denominator 5.3×51×5=155  So31 +35=155 +35= 15+35= 125(iv) The L.C.M. of denominators 27 and 18 is 54. Now, we will express 727 and 1118 in the form in which they take the denominator 54.7×227×2=1454  11×318×3=3354727 + 1118=1454+3354= 14+3354= 1954(v)We have 314 + 58=314 + 58The L.C.M. of denominators 4 and 8 is 8. Now, we will express 314 in the form in which it takes the denominator 8.31×24×2=628So314 + 58=628 + 58= (62)+(5)8= 6258=678(vi) The L.C.M. of denominators 36 and 12 is 36. Now, we will express 712 in the form in which it takes the denominator 36.7×312×3=2136So536 + 712=536 + 2136= 5+(21)36=52136=1636=49(vii) The L.C.M. of denominators 16 and 24 is 48. Now, we will express 516 and 724 in the form in which they take the denominator 48.5×316×3=1548  7×224×2=1448So516 + 724=1548+1448= (15)+1448= 15+1448= 148(viii) 718 + 827=718 + 827The L.C.M. of denominators 18 and 27 is 54. Now, we will express 718 and 827 in the form in which they take the denominator 54.7×318×3=2154  8×227×2=1654So718 + 827=2154+1654= 21+1654= 554=554

Question 3:

Simplify:
(i) 89+116
(ii) 3+57
(iii) 112+215
(iv) 819+457
(v) 79+34
(vi) 526+1139
(vii) 169+512
(viii) 138+536
(ix) 0+35
(x) 1+45

Answer:

(i) 89 + 116L.C.M. of the denominators 9 and 6 is 18. Now, we will express 89and 116 in the form in which they take the denominator 18.8×29×2=161811×36×3=331889 + 116=1618 + 3318= 16+(33)18= 163318=1718(ii) 3+57=31+57L.C.M. of the denominators 1 and 7 is 7. Now, we will express 31 in the form in which it takes the  denominator 7.3×71×7=21731+57=217+57=21+(5)7=2157=167(iii) 112+215=112+215L.C.M. of the denominators 12 and 15 is 60. Now, we will  express 112and 215in the form in which they take the denominator 60.1×512×5=5602×415×4=860112+215=560+860=(5)+(8)60=5860=1360(iv) 819 + 457L.C.M. of the denominators 19 and 57 is 57. Now, we will express 819in the form in which it takes the denominator 57.8×319×3=2457819 + 457=2457 + 457=24457=2857(v) 79 + 34=79 + 34L.C.M. of the denominators 9 and 4 is 36. Now, we will express 79and 34in the form in which they take the  denominator 36.7×49×4=28363×94×9=2736So79 + 34=2836+2736=28+(27)36=282736= 136(vi) 526 + 1139=526 + 1139L.C.M. of the denominators 26 and 39 is 78. Now, we will  express 526and 1139in the form in which they take the  denominator 78.5×326×3=157811×239×2=2278So526 + 1139=1578+2278=1522)78= 778(vii) 169 + 512L.C.M. of the denominators 9 and 12 is 36. Now, we will express 169and 512in the form in which they take the  denominator 36.16×49×4=64365×312×3=1536169 + 512=6436+1536= (64)+(15)36= 641536=7936(viii) 138+ 536L.C.M. of the denominators 8 and 36 is 72. Now, we will express 138and 536 in the form in which they take the  denominator 72.13×98×9=117725×236×2=1072138+ 536=11772+1072= 117+1072= 10772(ix) 0 + 35Taking L.C.M. of the denominator:= 0×535= 35(x) 1 + 45= 11 + 45L.C.M. of the denominators 1 and 5 is 5. Now, we will express 11in the form in which it takes the  denominator 5.1×51×5=5511 + 45=55 + 45= 545= 15

Question 4:

Add and express the sum as a mixed fraction:
(i) 125 and 4310

(ii) 247 and 114

(iii) 316 and 278

(iv) 1016 and 78

Answer:

(i) We have 125 + 4310. L.C.M. of the denominators 5 and 10 is 10. Now, we will express 125 in the form in which it takes the denominator 10.12×25×2=2410125 + 4310=2410+4310= 24+4310= 1910 = 1910(ii) We have 247 + 114.L.C.M. of the denominators 7 and 4 is 28. Now, we will express 247and 114 in the form in which they take the denominator 28.24×47×4=962811×74×7=7728247 + 114=9628+7728= 967728= 1928(iii) We have 316+ 278.L.C.M. of the denominators 6 and 8 is 24. Now, we will express 316and 278 in the form in which they take the denominator 24.31×46×4=1242427×38×3=8124316+ 278=12424+8124= 1248124= 20524 = 81324(iv) We have 1016 + 78.L.C.M. of the denominators 6 and 8 is 24. Now, we will express 1016and 78 in the form in which they take the denominator  24.101×46×4=404247×38×3=2124 1016 + 78=40424+2124= 404+2124= 42524= 171724



View NCERT Solutions for all chapters of Class 8